This document contains the following presentations (update Nov.9)

Chair's introduction to the session and subthemes: Sustainability and Technology related to food

Professor Pasi Kallio; Tampere University, Faculty of Medicine and Health Technology
Organ-on-chip technology for food research

Professor Tie Li; SIMT, CAS, State Key Lab of Transducers Technology
High performance micro-nano sensor

Professor Wenguo Cui; Shanghai Jiaotong University, Ruijin Hospital
International Centre of Advanced Biomedical Materials

Professor Hongbo Zhang; Åbo Akademi University, Pharmaceutical Sciences Laboratory Functional Materials for Healthcare

Professor Xuetao Wei; Peking University, Department of toxicology
Food safety and functional ingredients

Professor Yiming Zhang; Zhejiang A&F University, FOOD and Health college
Paper microfluidic flow device for food safety analysis

Professor Baoqing Zhu; Beijing Forestry University, Department of Food Science
The Quality Formation Mechanism of Forest Fruit and its Processed products -- from the five-year cooperation between Beijing Forestry University and University of Turku, Finland

Professor Liwei Pan; Dalian University, College of Environmental and Chemical Engineering The development of sustainable solutions in Dalian University

Associate Professor Wei Yang; Jiangnan University, School of Food Science and Technology
Enzymatic Acylation of Anthocyanins from Multiple Sources

Professor Marina Heinonen; University of Helsinki, Department of Food and Nutrition
Food ingredients and technologies for sustainable food production

Associate Professor Yue Huang; China Agricultural University, College of Food Science and Nutritional Engineering; Nondestructive assessment on food quality and safety

Assistant professor Maaria Kortesniemi, University of Turku, Food Chemistry and Food Development Unit Applications of NMR metabolomics in food authentication and quality control

Senior researcher Silvia Gaiani; University of Helsinki, Ruralia
Assistant professor Jian An Huang; University of Oulu: Optical Nanotechnologies for Single Cell, Single Particle and Single Molecule Point of Care Biosensors

Professor Leiqing Pan; Nanjing Agricultural University: Application of optical technology and biosensor in rapid quality inspection of food products
Sub-Group 3: Food and Health Technologies

Finland – China Food and Health network
November 1st, 2021

Prof. Pasi Kallio, Tampere University, Faculty of Medicine and Health Technology
Dr. Tuomas Valtonen, University of Turku
Research Aim

Develop and study technologies widely in relation to nutrition, food and health with the following focus areas:

- Food quality and composition analysis
- Food consumption / human nutrition monitoring
- Food production, processing and packaging
- Understanding and treatment of nutrition related diseases and responses to food
Examples of Research Topics

• Food quality and composition analysis
 • Technologies for improving food safety e.g. automated hygiene monitoring
 • Biosensors for food safety
 • Microfluidic chips with integrated sensors
 • Electronic nose technologies

• Food production, processing and packaging
 • Technologies for extracting valuable compounds from biomass, optimization of extraction processes from lab scale to pilot scale
 • Characterization of safety of compounds and ingredients using advanced in vitro and animal tests
 • Pilot scale production and analytical equipment (automation and robotics)
 • Digital twins and VR
 • Technological solutions that can increase food quality and extend the shelf life of food products
Examples of Research Topics

• Food consumption / human nutrition monitoring
 • Technologies for determining impacts of food and diet on human metabolism and health (Metabolomics)
 • Sensors for monitoring health / wearable health technology
 • Diagnostics of diet, nutritional and health status and technologies for determining personalized nutrition
 • Smart analysis technologies for monitoring consumer behaviour related to health and dietary data

• Understanding and treatment of nutrition related diseases and responses to food
 • Digital health interventions
 • Organ-on-chip technology for food-related diseases
Thank you!

Looking forward to collaboration with our Chinese colleagues
Finland – China
Food and Health Network

theme:
SUSTAINABILITY
OF FOOD, QUALITY AND SAFETY

Marina Heinonen
Professor (Food Safety)
SUSTAINABLE DEVELOPMENT GOALS

European Green Deal → climate neutral by 2050
RESEARCH GOALS & PRIORITIES

Mission 1
Healthy, safe, and sustainable diets are viable for all Finnish citizens by 2035

Combine research expertise in nutrition, food technology and behavioural sciences to understand the impact of healthy foods, healthy eating and support nutritionally high-quality food choices

Mission 2
Food system in Finland is based on sustainable, competitive, resilient food and feed production by 2035 – and beyond

To reach environmentally sustainable food and feed production with economic, social and cultural sustainability by inter- and transdisciplinary research

Mission 3
Resource efficient and zero waste are key determinants in the Finnish food system by 2035

To identify and valorize side streams for high resource efficiency and zero waste agrofood system

Mission 4
Finland will be a forerunner and leading test-bed for sustainable food system research and innovations

Combining technology and natural sciences with human-social sciences to empower the food system related research in Finland
MULTIDISCIPLINARY COLLABORATION for SUSTAINABLE FOOD SYSTEM & HUMAN WELLBEING

- Food processing
- Food consumption & nutrient intake
- Sensory & Consumer research
- Physiological responses to food
- Food safety
- Food characterization
- Environmental sustainability & footprints

NATURAL SCIENCES

SOCIAL & BEHAVIORAL SCIENCES

ENVIRONMENT

WELLBEING

HEALTH SCIENCES

FOOD RAW MATERIAL
LOOKING FORWARD TO COLLABORATION BETWEEN CHINESE AND FINNISH PARTNERS

research projects
research visits
workshops
education
Organ-on-chip technology for food research

Finland – China Food and Health network
1.11.2021
Prof. Pasi Kallio
Organ-on-chip?

• Cell cultures – more and more in 3D - that combine tissue engineering and microtechnologies to recapitulate the way a tissue or part of an organ work

• The goal is not to build a whole living organ but provide minimal functional units that have desired tissue- and organ-level functions

• Why?
 • To overcome limitations faced in traditional 2D in vitro cell culture models and animal models

• Where?
 • Drug development,
 • toxicity assessment,
 • understanding mechanisms of actions in diseases
Centre of Excellence in Body-on-Chip Research

CoEBoC

Tampere University
Multidisciplinary Research Consortium

• CoEBoC combines knowhow in **biological and engineering** sciences and aims to develop a new “body-on-chip” platform.
Expertise in CoEBoC

Engineering
Biomaterials and Tissue Engineering Group – Kellomäki
 • Biomaterials
 • Hydrogels
Computational Biophysics and Imaging Group – Hyttinen
 • 3D imaging
 • Computer modelling
Micro- and Nanosystems group – Kallio
 • Chip design and production
 • Microfluidics
 • Sensors

Stem cell biology
Adult stem cells group – Miettinen
 • Mesenchymal stem cells
 • Vascularization
 • Adipose tissue and bone
Heart group – Aalto-Setälä
 • Cardiomyocytes
 • Hepatocytes
 • Human iPS-cell lines
Neuro group – Narkilahti
 • Neuronal cells
 • Innervation
Gut-on-Chip

- 3D villi & crypt structure in the intestinal epithelial wall
 - Intestinal enterocytes, enteroendocrine cells, goblet cells, and Paneth cells
- Peristalsis and luminal flow
- Exposure to microbes (gut microbiome)
- Intestinal barrier formation
Technologies at Tampere University

• Chip fabrication
• Membranes
• Hypoxic conditions
• Flow
• Stretching
• Impedance measurement
• hiPSC derived intestinal epithelial cells
THANK YOU!

Interested in collaboration?

Prof. Pasi Kallio
Pasi.kallio@tuni.fi
High Performance Micro-nano Sensor
--- Biomimetic Olfactory Sensor

Tie Li
Shanghai Institute of Microsystem and Information Technology, CAS
Key Laboratory of Science and Technology on Microsystem
State Key Laboratory of Transducer Technology
- CMOS Camera (Vision)
- Microphone (Hearing)
- Speaker (Sound)
- Touch Screen (Touch)
- Smell (Vision)
- Sound (Hearing)
- Touch (Touch)
Biomimetic Olfactory Biosensor

Highly sensitive and reliable Biomimetic olfactory sensor: SiNWs and OBP molecules

- **Senseing Principle**
 - The SiNWs sensor is modified with biomolecular to absorb odor molecules, resulting in the change of charge density on the SiNWs surface, and to recognize the odor molecules by sensor.
Anopheles mosquito Odor molecule Binding Protein (OBP)

- Low molecular weight
- High structural stability
- Water solubility
- Temperature resistance

Disulfide bond
Test results of SiNWs Odor Biosensor

- OBP1
- OBP5
- OBP7
- OBP20
Conclusion

• Leaning from nature can get high-performance bionic sensors

• Bionic olfactory sensor can recognize different odor molecules and It is an important tool for human food safety and health protection in the future.
THANKS!

Tie Li
SIMIT,CAS
Tel. : +086-135019709598
Email : tli@mail.sim.ac.cn
Finland-China International Center for Advanced Biomedical Materials

Wenguo Cui
Ruijin Hospital, Shanghai Jiao Tong University
School of Medicine
Opening ceremony

In April 2018, Director Lianfu Deng from Ruijin Hospital hosted the Prof. Niklas Sandler, vice Rector from Åbo Akademi University in Shanghai and established the “International Center for Advanced Biomedical Materials”.

![Image of the opening ceremony]
In August 2019, Director Lianfu Deng visited Finland and further discussed the arrangement of “International Center for Advanced Biomedical Materials” with Prof. Jessica Rosenholm.
Collaboration agreements

转化医用材料国际联合实验室

转化医用材料国际联合实验室合作协议

甲方：上海市奉贤区人民医院（上海交通大学附属第六人民医院南院）
乙方：上海交通大学医学院附属瑞金医院
丙方：埃博学术大学

二、合作内容

1. 三方合作实现转化医用材料的国际联合，促进医用材料的临床转化及应用；

2. 三方可以共同申请各类联合基金，在各自单位经费配套政策下，给予申请基金的配套支持；

3. 鼓励三方联合招聘博士后科研人员，在本合同范围内，围绕三方感兴趣研究方向，甲方与乙方或丙方联合招生与培养高水平博士后，甲方将资助乙丙两方招聘的博士后人员的生活费（不低于18万RMB/年/人），乙、丙方将负责匹配在该方进行的科研经费（不低于2万欧元/年/人）。博士后导师应该由甲乙方、甲丙方联合担任（博士后），博士后导师均为科研成果通讯单位。成果与知识产权归属合作方共同所有；

4. 三方可互派科研人员进行互访，人员费用共同商议决定；

5. 三方可定期开展学术交流，三方交流时间、地点等共同商议决定。

Party A (stamp and representative signature): Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus (Shanghai Fengxian District Central Hospital)

乙方（盖章及代表签名）：上海市伤科研究所

Party B (stamp and representative signature): Shanghai Institute of Traumatology and Orthopaedics

丙方（盖章及代表签名）：埃博学术大学

Party C (stamp and representative signature): Åbo Akademi University

二〇一八年四月十七日

17th April, 2018
Main Cooperation Contents and Achievements (2018-2021)

- **International cooperation:** Promoting the medical material transformation and clinical transformation.
- **Personal exchange:** 6 visiting Professors visited Finland during 2018-2021.
- **Postdoc requirement:** 2 Postdocs from Ruijin Hospital to carry out cooperative projects in Finland.
- **Joint PhD student requirement:** 8 PhD students have enrolled in the ÅAU PhD program.
- **Joint Project application:** 4 joint projects have been awarded by China (1 from China government and 3 from Shanghai).
- **Co-publications:** 23 co-publications have been published, including 17 papers with impact factor of 10+.
- **Infrastructure:** Ruijin hospital has received governmental funding from Jiaxing city in November 2020 to build a research center, which will provide lab spaces for hosting the visitors from ÅAU, especially on animal experiments.
Future Prospective

- **International mobility:** We welcome the international experts from Finland to visit us at any time and we will also send our researchers to Finland.

- **Joint PhD student requirement:** 10 PhD students/year will be enrolled in the ÅAU PhD program. Ruijin hospital will provide partially funding support.

- **Joint Project application:** apply joint and frontier grants from Finland and China.

- **Co-publications:** 5-10 joint papers/year. We only focus on papers with high impact and clinical translational potential.

- **Collaboration with FCFH:** we hope to collaboration with FCFH and to promote the Finland-China collaboration in health.
Thanks!
Food Active Ingredients, Nutrition & Health

Prof. ZHANG, YUMEI（张玉梅）
School of Public Health, Peking University, Health Science Center
zhangyumeisphn@pku.edu.cn
Our team—A happy family!

“Dounai group” (豆奶一族: dou means soybean, nai means milk)

2 Professors, both Ph.D supervisor; Dr. Peiyu Wang, Dr. Yumei Zhang
1 Associate Professor; Dr. Jianghua
1 (Tsinghua) Assistant Professor; Dr. Ai Zhao
1 Biostatistics: Dr. Yingdong Zheng
1 Postdoc, Dr. Linwei Tao
5 Ph.D Students,
4 Graduate Students for MS
Here comes the Team

• **Projects Undertaking:**
 • **11** NSFC (National Natural Science Foundation of China) projects, I am PI **5** of them;
 • **1** National Scientific key projects of 13th five year plan
 • **2** Beijing Major Science and Technology Project; **1** Hebei Major Science and Technology Project; **1** Key Project of NSFBJ
 • Cooperate Universities: University of TURKU, UC DAVIS, University of Iceland;
 • Cooperate with diary companies: Nestle, Arla, Fonterra, BASF, DSM, Chinese local companies such Yili, Mengniu, Sanyuan, Junlebao etc.
 • Cooperated with 10 plus Chinese universities, 15 maternal and children's hospitals, 20 plus community hospitals
Plant active Ingredients

- Soy Isoflavones and soy active ingredients on Cardiovascular disease & mechanism;
- Sea buck thorn fruits juice on hyperlipidemia & prediabetes—cooperated with University of Turku); (2 RCT)
- Phytosterols esters added to bovine milk & hypercholestromia
- β-conglycinin of soybean; (1 RCT)
- Lactobacillus casei N1115; (2 RCT)
- Prebiotics (inulin) on lactose deficiency (1 RCT)
- Anthocyanins from purple potato, blue berries
- DHA at different position of triglycerides

RCT: randomized clinical trials
16 years of experience: from rural Hebei to national and international multi center breast milk research

2005
Hebei rural areas
50 samples
Laishui, Hebei Province

2011
Maternal Infant Nutrition & Growth
580 samples
MING Study
Beijing, Suzhou, Guangzhou

2016
80 samples
Multicenter: China, Finland, Spain, South Africa

2018
Chinese North & South Cohort
Breastfeeding cohort study

Over 5000 samples
*13th 5 years Key projects
Milk active Ingredients

---Nutrients or active ingredients of foods

✔ Chinese breast milk fatty acids, milk microbiota, mycobiome & NMR metabolomics are different from Finland, Spain, South Africa; ---multicenter study

✔ The trend of bioactive protein such as α-lactoalbumin osteopontin, gangliosides, fatty cids, human milk oligosaccharides in human milk whey and casein);---longitudinal study

✔ Probiotics on children and adult health:
 ✔ Lactobacillus casei N1115 from Tibet traditional yogurt on Hyperlipidemia; the safety and improve immune fucnction on infants and toddlers (2 RCT)
 ✔ A strain of Bifidobacterium animalis subsp. lactis on infants, safety and immune;(1RCT)
 ✔ A strain Bifidobacterium infantis on children health(1RCT)
Before and After in our Cooperation

Teaching & Training Programs between China- Finland

Research Cooperation :

Thanks!

Wonderful future cooperation!
Nanotechnology for Precision Medication

Associate Professor, Åbo Akademi University
Guest Professor, Shanghai Jiaotong University
Contents:

- Developed new materials and technologies based on real clinical problems.
- In our projects, the clinical doctors are involved in.
- We aim to have clinical translation.
Nanoparticles produced by our group
Technology 1: Nanomedicine

I have many years of research experience in nanomaterials (especially mesoporous materials and DNA nanomaterials), and I develop tools for drug delivery, targeted therapy, nanodiagnosis, imaging, and cancer treatment.

1: DNA nanomaterials: for biological responsive delivery and precision diagnostics

2: Biomimetic nanomaterials: use cell member, exosome or other biological agents in nanoparticle design.

3: Nanoparticle for *in vivo* labelling and stem cell tracking *in vivo*

ADDR. 2021, 176, 113891 (IF 15.47)

Nat. Com. 2019, 10, 1-16 (IF 11.8)
Bioact. Mater, 2020, 6 (2), 433-446 (IF 14.5)
Nano Letters, 2018, 18, 1448-1453 (IF 11.189)

Adv. Mater. 2021, 33, e2005709 (IF 30.8)
Small, 2019, 15, 1804332 (IF 13.281)
Biomaterials, 2019, 226, 119538 (IF 12.479)
ACS AMI, 2020, 12, 37885-37895 (IF 9.229)
Technology 2: Functional Materials for Regenerative Medicine

Using 3D printing technology, electrospinning technology to prepare a variety of biological functional scaffolds, to achieve bone and skin regeneration, and promote clinical transformation.

1. Bionic bone: simulate the natural structure of bone through 3D printing to promote bone regeneration.

2. Stem cell therapy: prepare hydrogel to support the implant of stem cells, thereby promoting skin defect repair.

3. Adjust the microenvironment: delivery siRNA or other biomarkers through minimally invasive injectable hydrogel to adjust the microenvironment thus promote tissue regeneration.

ADDR. 2021, 174, 504-534 (IF 15.47)
Biomaterials, 2019, 190, 97-110 (IF 12.479)

Adv Sci, 2019, 6, 1801555 (IF 16.806)
App Mater Today, 2018, 13, 54-63 (IF 10.041)

Adv. Healthc Mater. 2020, 9, 1901239 (IF 9.933)
Adv Sci, 201902099 (IF 16.806)
Mater Horiz, 2019, 6, 385-393 (IF 13.266)
Mater Horiz, 2018, 5, 1082-1091 (IF 13.266)
Technology 3: Microfluidics

My Postdoc supervisor Prof. David A. Weitz is one of the founder and most famous scientists in microfluidics in the world. I have been studying microfluidics and also built up the microfluidics platforms in ÅAU.

1. Single Emulsion: can produce all kinds of microparticles.

Small. 2021, 17, e2100479 (IF 13.281)
Biomaterials, 2018, 185, 322-332 (IF 12.479)

2. Nanoprecipitation: can produce all kinds of nanoparticles.

Nano Letters, 2017, 17, 606-614 (IF 11.189)
ACS AMI, 2020, 12, 45838-45849. (IF 9.229)

3. Double Emulsion: can produce core-shell microparticles for more complicate applications.

PNAS 2019, 116, 7744-7749 (IF 11.205)
ADDR, 2018, 128, 54-83 (IF 15.47)
Thank you! Contact: hongbo.zhang@abo.fi
Quality Formation Mechanism of Forest Fruit and its Processed products
-- from five-years cooperation between BFU & UT

Baoqing Zhu Dr. zhubaoqing@bjfu.edu.cn
Bolin Zhang Prof. Dr. zhangbolin888@163.com

The Department of Food Science,
College of Biological Sciences and Biotechnology,
Beijing Forestry University
Contents

1. Our Team in BFU
2. Our Cooperation with UT
3. Prospects for Future Cooperation
1 Our Team in BFU

Research Interests:

(1) Quality of berries & their related fermented products

(2) Development of berries fermented products

Techniques: Metabolomics; Systems Biology; Sensory Analysis;

Members: Prof. Zhang Bolin, Dr. Zhu Baoqing, Dr. Zhao Hongfei
2 Our Cooperation with UT

(1) Scientific research
2 Our Cooperation with UT

(1) Scientific research

Effect of Lactobacillus acidophilus, Oenococcus oeni, and Lactobacillus brevis on Composition of Bog Bilberry Juice

Yuqi Chen¹,†, Xiaoyu Ouyang¹,†, Oskar Laaksonen²©, Xiaoyu Liu¹, Yuan Shao¹, Hongfei Zhao¹, Bolin Zhang¹ and Baoqing Zhu¹,*

¹ Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; chenyuqi0226@163.com (Y.C.); oxyy1993@sina.com (X.O.); 15632102801@163.com (X.L.); 13261361300@163.com (Y.S.); zhaohf820603@163.com (H.Z.); zhangbolin888@163.com (B.Z.)

² Food Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland; Osanla@utu.fi

* Correspondence: zhubaoqing@bjfu.edu.cn; Tel./Fax: +86-10-6233-8221
† These authors equally contributed to this work.

Received: 26 August 2019; Accepted: 15 September 2019; Published: 21 September 2019

Foods, 2019, 8, 430
2 Our Cooperation with UT

(1) Scientific research

Lactic acid bacteria incubation and aging drives flavor enhancement of goji berry juice

Yaran Liua,1, Pan Gua,c,1, Oskar Laaksonend, Bo Weia, Yuxuan Zhua, Bolin Zhanga, Baoqing Zhua,*, Hehe Lib,**

a Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
b Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China
c Beijing Academy of Food Sciences, Beijing, 100068, China
d Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014, Turku, Finland
(2) Education and teaching

Summer school courses presented by Professor Dr. Baoru Yang in the July, 2021
2 Our Cooperation with UT

(2) Education and teaching

2018.11 Heilongjiang, China

2019.05 Beijing Forestry University
2 Our Cooperation with UT

3) Exchange visits

2017.09 University of Turku
2 Our Cooperation with UT

(3) Exchange visits

2017.09 University of Turku
3 Prospects for Future Cooperation

Berry Industrial problem

- Strong seasonal use
- Short harvest time
- Difficult to preserve

Fermentation

Improve added value

3 Prospects for Future Cooperation

Berry Industrial problem

- Strong seasonal use
- Short harvest time
- Difficult to preserve

Fermentation

Improve added value
Many thanks to Finland Partner

- Pro. Baoru Yang
- Dr. Oskar Laaksonen
- Dr. Maaria Kortesniemi
- Dr. Wei Yang
- Dr. Xueying Ma
- Dr. Shuxun Liu
- Dr. Leena Faven
- Pro. Hely Haggman
- Pro. Pekka Oinas
Many thanks to our team in BFU
Thank you for listening.
Welcome to visit and cooperate with us.

The Department of Food Science,
College of Biological Sciences and Biotechnology,
Beijing Forestry University
Development of Sustainable Solutions in Dalian University

Dalian University

Pan Liwei
Technical introduction - IMFZ

IMFZ (Integrated Methanation, Fertilization and Zero emission technology) is defined as an organic wastes treatment method, which combines anaerobic co-digestion with aerobic composting for producing the clean energy of methane and green organic fertilizer.

Feedstock
- Biomass waste
- Livestock waste

Feedstock
- Lignocellulose
- Manure and other wastes

<table>
<thead>
<tr>
<th>Feedstock</th>
<th>Biogas yield</th>
<th>Volumetric biogas yield</th>
<th>Degradation efficiency</th>
<th>Methane content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lignocellulose</td>
<td>≥350 m³/tTS</td>
<td>≥1.8 m³/m³·d</td>
<td>≥75%</td>
<td>≥60%</td>
</tr>
<tr>
<td>Manure and other wastes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Biogas yield

- Biogas residue

Biogas yield

- Biogas Liquid

Biogas yield

- Biogas

Biogas yield

- Aer. Compost

Biogas yield

- Fertilizer

Biogas yield

- Production

Biogas yield

- IMFZ System

Biogas yield

- Pretreatment

Biogas yield

- Ana. Digestion

Biogas yield

- Biogas

Biogas yield

- Rumen fluid

Biogas yield

- Electric energy

Biogas yield

- Heat energy

Biogas yield

- Artificial substrate

Biogas yield

- Commercial liquid organic fertilizer

Technical introduction - IMFZ

- Biogas yield
- Volumetric biogas yield
- Degradation efficiency
- Methane content

Technical introduction - IMFZ

- Biogas yield
- Volumetric biogas yield
- Degradation efficiency
- Methane content
Greenhouse used Combined heat and power system (CHP) based on PEM fuel cell
Thanks for your attention!
Enzymatic Acylation of Anthocyanins from Multiple Sources

Wei Yang
School of Food Science and Technology
Jiangnan University
1.11.2021
Why?

Limitations in application

• Poor lipophilicity
• Thermal stability
• Unstable
 heat, light, pH changes

How?

Enzymatic Acylation of Anthocyanins

Natural acylated anthocyanins

• ca.50% known anthocyanins
• More stable
Anthocyanin source

- Alpine bearberry (*Arctostaphylos alpina*)
 Cyanidin-3-galactoside
- Blackcurrant (*Ribes nigrum*)
 Four anthocyanins
- Black goji berry (*Lycium ruthenicum*)
 Petunidin-3-trans-p-coumaroyl-rutinoside-5-glucoside

The anthocyanins were purified by column chromatography (Sephadex LH-20)
Current Results

Enzymatic acylation of single anthocyanin

Ref: W Yang et al. Journal of agricultural and food chemistry 66 (11), 2909-2916
Enzymatic acylation of mixed anthocyanins

Ref: W Yang et al. Food chemistry 281, 189-196
Enzymatic re-acylation of natural acylated anthocyanin

Ref: W Yang et al. Food chemistry, in press
Results in progress

- Simulated *in vitro* digestion (mouth, stomach, small intestine)
- Thermal degradation pathway of acylated anthocyanins
- Cytotoxicity and *in vivo* toxicity tests
- Sensory evaluation
- Metabolomics of acylated anthocyanins

KEY ISSUES for the applications in the cosmetics and food industry
Thanks for your attention!
INGREDIENTS & TECHNOLOGIES FOR SUSTAINABLE FOOD PRODUCTION

Marina Heinonen
Professor (Food Safety)
Head of the Department of Food and Nutrition
SUSTAINABLE FOOD SYSTEM & HUMAN WELLBEING

- Vitamin B₁₂, folate, sterols, lipids, plant phenolics, xylans and mannans, beta-glucan, animal, insect & plant proteins

NEW PLANT BASED PRODUCTS

BIOACTIVE INGREDIENTS FROM CEREAL SOURCES

BY-PRODUCTS AND MICROBIAL RESOURCES

FOOD SAFETY

NUTRITIONAL POLICY TARGETED ON CHILDREN AND ADOLESCENTS
KEY RESEARCH PROJECTS

Leg4life

Healthy nutrition for children

B12 enrichment of plant food

The EIT Food community of 50 business, academic and research partners

FOOD MATERIALS SCIENCE
Designing food structures and understanding hydrocolloid functionality

GRAIN TECHNOLOGY
Understanding grain functionality for healthy and appealing foods

European Research Council
Established by the European Commission
PILOT PLANT PROCESSING

Microfluidizer – emulsion preparation

Extrusion – making of snacks, foods, meat analogues …

Bakery – conventional & novel ingredients

Pilot dairy – yoghurt, cheese, dairy analogues …
NEW INNOVATION PLATFORM

For innovators with food system transforming inventions!

Laura Forsman, Viikki Food Design Factory Manager
Nondestructive assessment on food quality and safety
Case of condiment

Yue Huang
China Agricultural University

Email: huangyue@cau.edu.cn
Catering revenue € 630 billion

Condiment market € 54 billion

2020
Background

Piperine
Capsaicin
adulteration
Nitrosamines
Metals
Pepper

Most important condiments with the largest market share in the world
Analysis

Portable spectroscopy → Black and white peppers

Identification
Fraud identification, Grading

Quantification
Content of fraud and piperine
Identification

LDA model

- 104 samples, At 86%, Ap 100%

SVM model

- 78 samples, At 100%, Ap 91%
Quantification

Portable NIRS & Raman

0.15 S

Fraud

Piperine
Portable NIRS-Content of piperine (PLS)

Factors: 3
Rc: 0.9794
RMSEC: 0.1425
Rp: 0.9728
RMSEP: 0.1604
RPD: 6.0474
Factors:

- \(R_c \): 0.9668
- RMSEC: 0.1809
- \(R_p \): 0.9023
- RMSEP: 0.3038
- RPD: 3.1929

Portable Raman-Content of piperine (PLS)
Image Analysis
Analysis

Fraud honey

Spectral fusion
Spectral fusion

MIR
- Calibration
- Validation
- Linear fit of calibration $R^2=0.95$, RMSEcv=1.632
- Linear fit of validation $R^2=0.92$, RMSEP=1.933

Raman
- Calibration
- Validation
- Linear fit of calibration $R^2=0.80$, RMSEcv=3.383
- Linear fit of validation $R^2=0.88$, RMSEP=2.301

High-level data fusion 2
- Calibration
- Validation
- Linear fit of calibration $R^2=0.96$, RMSEcv=1.129
- Linear fit of validation $R^2=0.94$, RMSEP=1.244
Further Application
Industrial application
Cooperation

- Extend the application range
- Online hyper imaging monitoring
- Chemometrics
Thanks for your attention

Email: huangyue@cau.edu.cn
Applications of NMR metabolomics in food authentication and quality control
NMR metabolomics is an efficient tool for assessing food quality, processing and safety of raw materials and final products

- Little or no sample preparation (green method)
- Snapshot of sample’s small-molecular-weight metabolites
- Fast and reliable screening method providing targeted and non-targeted multi-marker analysis

- Plant foods
 - Genotype (Kortesniemi et al. 2015, 2017)
 - Geographical origin (Kortesniemi et al. 2017; Paryani et al. 2020)
 - Abiotic/biotic stress (Kortesniemi et al. 2017)
 - Temporal variation (Kortesniemi et al. 2015; Paryani et al. 2020)
 - Agricultural practices

Instrumentation provided by the Turku Centre for Chemical and Molecular Analytics (CCMA)
Honey
- Varietal (unifloral) / multifloral
- Botanical origin, authenticity
- Quality, commercial value
- Many benefits over traditional methods
- Reference databases for authentication

Sea buckthorn juice
- Flavor modification of sea buckthorn (Hippophaë rhamnoides) juice
- Optimization of malolactic fermentation with L. plantarum
 - Strain, pH, medium, duration

Commercial omega-3 supplements
- Lipid class
- Nutritional quality
- Oxidation

Kortesniemi et al. (2016) Food Res Int
Kortesniemi et al. (2018) Food Chem
Markkinen et al. (2022) Food Chem
Damerau et al. (2020) Food Chem
Thank you for your attention!

非常感谢

Contact:
Maaria Kortesniemi
mkkort@utu.fi
My research in a nutshell

5 YEARS RESEARCH (2021-2025)

OBJECTIVE

To produce knowledge that can help support and shape the active role of food companies in South Ostrobothnia & Finland and promote an understanding of new business opportunities in the sustainable transformation of the food chain.

The research could potentially lead to the creation of an Innovation Hub/Food Business Booster in the region.

SOME OF THE RESEARCH QUESTIONS

1. What is the current level of innovation in Finnish and South Ostrobothnian food companies?
2. How do new innovations and practices emerge? What is an innovation ecosystem in relation to food?
3. What is the role of food entrepreneurs in promoting innovations and sustainability transition?
4. What are the new emerging and promising trends in food innovation? (plant-based food/alternative proteins/products/insects/3D printed food?)
Perfect timing for my research. WHY?

In terms of policies

Finland’s Food Research Mission for 2035 (released in March 2021)
The Finnish food system is based on sustainable, flexible, and competitive food and runs pilots on research, innovations and new operating methods that aim for a sustainable food system

The Finnish Innovation Ecosystem Agreement (released in April 2021)
Seinäjoki: Sustainable regeneration of the food ecosystem and intelligent regeneration of industry

Southern Ostrobothnia Regional Program (2018-2021)
The Regional Program states that organic and local food will remain permanent phenomena, which means that small local food companies will bring new significance to the market.

In terms of facts...

- South Ostrobothnia is the **Food Province of Finland** - and there are a number of projects going on around food
- It has been nominated as the **best business environment** by the Federation of Finnish Enterprises
- Business investments are expected to be around **1 billion euro** in 2021
- **1000 hectares of new business area**
- **Seinäjoki has been nominated n.1 city of entrepreneurship and it is the capital of space**

Many institutions are working in the region to promote activities, projects and researches on food, innovation, digitalization, sustainability
Current activities

• Collecting data from food companies to understand their current level of innovation in food products, processing and technologies
• Developing strategies and tools to enhance resilience of the food companies and promote internationalization, networking activities and start ups
• Writing project proposals in the framework of Horizon Europe calls and other EU and Finnish funding opportunities
• Promote collaboration among academia and industry
• Happy to explore collaboration with Chinese universities!
THANK YOU!
Silvia Gaiani
silvia.gaiani@helsinki.fi

Check Ruralia website:
https://www2.helsinki.fi/en/ruralia-institute
Optical Nanotechnologies for Single-Cell, Single-Particle and Single-Molecule Point-of-Care Biosensors

Jian-An Huang
University of Oulu
Jian-An’s brief CV

February 2021 - now: Assistant Professor in Biosensors, University of Oulu, Finland

2nd-round postdoc: Nanophotonic Biosensing, Italian Institute of Technology, Italy

1st-round postdoc: Scanning Near-field Optical Microscope, University of Hong Kong, China

PhD.: Physics & Materials Science, City University of Hong Kong, China

BSc.: Applied Chemistry, University of Science & Technology of China, China
Optical Nanotechnologies for Point-of-Care Biosensors of Single Cell, Single Particle and Single Molecule
Wafer-scale plasmonic nanostructures fabricated by Nanosphere Lithography for Raman biosensing

Plasmonic nanopillar in microfluidic chip for quantitative Raman detection of biomolecules

Low-cost Taro-leaf test chip for reproducible surface-enhanced Raman spectroscopy (SERS)
Single-cell study by a plasmonic gold nanotube for low-voltage electrophoration of cell membrane

Single-molecule sequencing by Raman spectroscopy on a plasmonic nanopore

Thank you for your attentions!

Jian-An Huang
Jianan.huang@oulu.fi
Application of optical technology and biosensor in rapid quality inspection of food products

Leiqing Pan, Professor
Nanjing Agricultural University
Email: pan_leiqing@njau.edu.cn
Optical technology: Integrating sphere

Journal of Food Composition and Analysis
Volume 98, May 2021, 103843

Original Research Article

Quantitative determination of sugar profiles in peach fruit during storage by an integrating sphere system

Qiang Liu a, b, Chen Ma b, Kangli Wei b, Kang Tu b, Leiqing Pan b, c

Fructose
Glucose
Sucrose
SSC

Sugar Profiles

HPLC

Chemometric Analysis

Quantitative Prediction

Spectral Collection

Absorption \(\mu_a \)
Scattering \(\mu_s \)

Spectral Analysis

Soluble sugar contents

Peach
melting-flesh
non-melting-flesh
Effects of caprolactam content on curdlan-based food packaging film and detection by infrared spectroscopy

Jingyi Zhu, Qian Wang, Lu Han, Chong Zhang, Yuanyuan Wang, Kang Tu, Jing Peng, Jiahong Wang, Leiqing Pan

Optical technology: Infrared spectroscopy
Hyperspectral imaging with different illumination patterns for the hollowness classification of white radish

Leiqing Pan, Ye Sun, Hui Xiao, Xinzhe Gu, Pengcheng Hu, Yingying Wei, Kang Tu
A magnetic relaxation DNA biosensor for rapid detection of *Listeria monocytogenes* using phosphatase-mediated Mn(VII)/Mn(II) conversion

Yue Li a, 1, Long Wu b, c, 1, Zhilong Wang b, Kang Tu a, Leiqing Pan a, b, *, Yiping Chen b, c, *
A fluorescence biosensor for *Salmonella typhimurium* detection in food based on the nano-self-assembly of alendronic acid modified upconversion and gold nanoparticles

Min Chen, Leiqing Pan and Kang Tu

Analytical Methods

A fluorescence biosensor for *Salmonella typhimurium* detection in food based on the nano-self-assembly of alendronic acid modified upconversion and gold nanoparticles

Min Chen, Leiqing Pan and Kang Tu

Biosensor
Thanks for you attention!